【346559】7.3 第1课时 一元一次不等式组及解简单的一元一次不等式组
7.3 一元一次不等式组
第1课时 一元一次不等式组及解简单的一元一次不等式组
1.理解并掌握一元一次不等式组的相关概念;
2.掌握简单的一元一次不等式组的解法.(重点、难点)
一、情境导入
如图,小红现有两根小木棒,长度分别为20cm和40cm,她想再找一根木棒来拼接成一个三角形,那么她所寻找的第三根木棒的长度应符合什么条件呢?
二、合作探究
探究点一:一元一次不等式组的概念
判断下列式子中,哪些是一元一次不等式组?
(1) (2) (3) (4) (5)
解析:根据一元一次不等式组的定义作答.
解:(1)中x=42是方程,不是不等式,故不是一元一次不等式组;(2)中x2<81是一元二次不等式,故不是一元一次不等式组;(3)符合一元一次不等式组的定义,是一元一次不等式组;(4)含有两个未知数,是二元一次不等式组,故不是一元一次不等式组;(5)符合一元一次不等式组的定义,是一元一次不等式组.综上所述,(3)(5)是一元一次不等式组.
方法总结:一元一次不等式组中含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次.熟练掌握定义并灵活运用是解题的关键.
探究点二:一元一次不等式组的解集
不等式组的解集在数轴上表示为( )
解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共部分是1≤x<3.故选C.
方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其解集的公共部分在数轴上方应当是有两根横线穿过.
探究点三:解简单的一元一次不等式组
解下列不等式组:
(1)
(2)2x+3<4(x-1)+3≤3x+2.
解析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
解:(1)解不等式①,得x<2,解不等式②,得x>-4,∴原不等式组的解集为-4<x<2;
(2)不等式组可化为解不等式①,得x>2,解不等式②,得x≤3,∴原不等式组的解集是2<x≤3.
方法总结:解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
三、板书设计
解一元一次不等式组是建立在解一元一次不等式的基础之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共部分,学生的易错点在确定不等式的解集,教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证
www.ishijuan.cn 爱试卷为中小学老师学生提供免费的试卷下载关注”试卷家“微信公众号免费下载试卷
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘