【327784】2022年云南省中考数学真题
绝密·启用前
2022年云南省中考数学真题
题号 |
一 |
二 |
三 |
总分 |
得分 |
|
|
|
|
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
|
一、选择题 |
1.赤道长约为40000000m,用科学记数法可以把数字40000000表示为( )
A.4×107
B.40×106
C.400×105
D.4000×103
2.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )
A.10℃
B.0℃
C.-10
℃
D.-20℃
3.如图,已知直线c与直线a、b都相交.若a
b,∠1=85°,则∠2=( )
A.110°
B.105°
C.100°
D.95°
4.反比例函数y=
的图象分别位于( )
A.第一、第三象限
B.第一、第四象限
C.第二、第三象限
D.第二、第四象限
5.如图,在
ABC中,D、E分别为线段BC、BA的中点,设
ABC的面积为S
,
EBD的面积为S
.则
=( )
A.
B.
C.
D.
6.为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:
评委1 |
评委2 |
评委3 |
评委4 |
评委5 |
9.9 |
9.7 |
9.6 |
10 |
9.8 |
数据9.9,9.7,9.6,10,9.8的中位数是( )
A.9.6
B.9.7
C.9.8
D.9.9
7.下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )
A.三棱柱
B.三棱锥
C.四棱柱
D.圆柱
8.按一定规律排列的单项式:x,3x²,5x³,7x
,9x
,……,第n个单项式是( )
A.(2n-1)
B.(2n+1)
C.(n-1)
D.(n+1)
9.如图,已知AB是⊙O的直径,CD是OO的弦,AB⟂CD.垂足为E.若AB=26,CD=24,则∠OCE的余弦值为( )
A.
B.
C.
D.
10.下列运算正确的是( )
A.
B.
C.
D.
11.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使
DOE
FOE,你认为要添加的那个条件是( )
A.OD=OE
B.OE=OF
C.∠ODE
=∠OED
D.∠ODE=∠OFE
12.某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是( )
A.
B.
C.
D.
|
二、填空题 |
13.若代数式
有意义,则实数x的取值范围是______.
14.点A(1,-5)关于原点的对称点为点B,则点B的坐标为______.
15.分解因式:x2-9=______.
16.方程2x2+1=3x的解为________.
17.某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm,底面圆的半径为10
cm,这种圆锥的侧面展开图的圆心角度数是_____.
18.已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是____.
|
三、解答题 |
19.临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:
说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:
(1)补全条形统计图;
(2)若该小区有1820人,估计喜爱火腿粽的有多少人?
20.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.
游戏规则如下:在—个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片卡片上的数字记为b.然后计算这两个数的和,即a+b,若a+b为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.
(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;
(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?
21.如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
22.某学校要购买甲、乙两种消毒液,用于预防新型冠状病霉.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元:若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.
(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?
(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买.才能使总费用W最少?并求出最少费用,
23.如图,四边形ABCD的外接圆是以BD为直径的⊙O,P是⊙O的劣狐BC上的任意一点,连接PA、PC、PD,延长BC至E,使BD²=BC⋅BE.
(1)请判断直线DE与⊙O的位置关系,并证明你的结论;
(2)若四边形ABCD是正方形,连接AC,当P与C重合时,或当P与B重合时,把
转化为正方形ABCD的有关线段长的比,可得
是否成立?请证明你的结论.
24.已知抛物线
经过点(0,2),且与
轴交于A、B两点.设k是抛物线
与
轴交点的横坐标;M是抛物线
的点,常数m>0,S为△ABM的面积.已知使S=m成立的点M恰好有三个,设T为这三个点的纵坐标的和.
(1)求c的值;
(2)直接写出T的值;
(3)求
的值.
参考答案
1.A
【解析】
根据科学记数法“把一个大于10的数表示成
的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.
解:
,
故选:A.
2.C
【解析】
零上温度记为正,则零下温度就记为负,则可得出结论.
解:若零上
记作
,则零下
可记作:
.
故选:C.
3.D
【解析】
利用平角的定义,平行线的性质:两直线平行,同位角相等,即可得出答案.
解:如下图,
∵∠1=85°,
∴∠3=180°-85°=95°,
∵a
b,∠3=95°,
∴∠2=∠3=95°.
故选:D.
4.A
【解析】
根据反比函数的图象和性质,即可求解.
解:∵6>0,
∴反比例函数y=
的图象分别位于第一、第三象限.
故选:A
5.B
【解析】
先判定
,得到相似比为
,再根据两个相似三角形的面积比等于相似比的平方,据此解题即可.
解:∵D、E分别为线段BC、BA的中点,
∴
,
又∵
,
∴
,相似比为
,
∴
,
故选:B.
6.C
【解析】
根据中位数的概念分析即可.
解:将数据按照从小到大的顺序排列为:9.6,9.7,9.8,9.9,10,则中位数为9.8.
故选:C.
7.D
【解析】
根据三视图逆向即可得.
解:此几何体为一个圆柱.
故选:D.
8.A
【解析】
系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.
解:依题意,得第n项为(2n-1)xn,
故选:A.
9.B
【解析】
先根据垂径定理求出
,再根据余弦的定义进行解答即可.
解:∵AB是⊙O的直径,AB⟂CD.
∴
,OC=
=13,
∴
.
故选:B.
10.C
【解析】
根据合并同类二次根式判断A,根据零次幂判断B,根据积的乘方判断C,根据同底数幂的除法判断D.
解:A.
不是同类二次根式,不能合并,此选项运算错误,不符合题意;
B.
,此选项运算错误,不符合题意;
C.
,此选项运算正确,符合题意;
D.
,此选项运算错误,不符合题意;
故选:C.
11.D
【解析】
根据OB平分∠AOC得∠AOB=∠BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果.
解:∵OB平分∠AOC
∴∠AOB=∠BOC
当△DOE≌△FOE时,可得以下结论:
OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.
A答案中OD与OE不是△DOE≌△FOE的对应边,A不正确;
B答案中OE与OF不是△DOE≌△FOE的对应边,B不正确;
C答案中,∠ODE与∠OED不是△DOE≌△FOE的对应角,C不正确;
D答案中,若∠ODE=∠OFE,
在△DOE和△FOE中,
∴△DOE≌△FOE(AAS)
∴D答案正确.
故选:D.
12.B
【解析】
设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.
解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,
根据题意,可列方程:
,
故选:B.
13.x≥﹣1
【解析】
根据二次根式有意义的条件可得:x+1≥0,即可求得.
解:∵代数式
有意义
∴x+1≥0,
∴x≥﹣1.
故答案为:x≥﹣1.
14.(-1,5)
【解析】
根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.
解:∵点A(1,-5)关于原点的对称点为点B,
∴点B的坐标为(-1,5).
故答案为:(-1,5)
15.(x+3)(x-3)
【解析】
解:x2-9=(x+3)(x-3),
故答案为:(x+3)(x-3).
16.
【解析】
先移项,再利用因式分解法解答,即可求解.
解:移项得:
,
∴
,
∴
或
,
解得:
,
故答案为:
.
17.
【解析】
设这种圆锥的侧面展开图的圆心角度数为n,
,进行解答即可得.
解:
设这种圆锥的侧面展开图的圆心角度数为n°,
故答案为:
.
18.40°或100°
【解析】
分∠A为三角形顶角或底角两种情况讨论,即可求解.
解:当∠A为三角形顶角时,则△ABC的顶角度数是40°;
当∠A为三角形底角时,则△ABC的顶角度数是180°-40°-40°=100°;
故答案为:40°或100°.
19.(1)见解析
(2)估计喜爱火腿粽的有546人.
【解析】
(1)用喜爱鲜花粽的人数除以它所占的百分比得到调查的总人数,再计算喜爱火腿粽的人数后,即可补全条形统计图;
(2)用1820乘以30%可估计喜爱火腿粽的的大约人数;
(1)
解:这次随机调查中被调查到的人数是70÷35%=200(人),
喜爱火腿粽的人数为:200-70-40-30=60(人),
补全条形图如下:
;
(2)
解:估计喜爱火腿粽的有1820×30%=546(人);
答:估计喜爱火腿粽的有546人.
20.(1)见解析,(a,b)所有可能出现的结果总数有8种;
(2)游戏公平,理由见解析
【解析】
(1)列表列出所有等可能结果即可;
(2)由和为偶数的有8种情况,而和为奇数的有4种情况,即可判断.
(1)
解:列表如下:
|
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
由表格可知,(a,b)所有可能出现的结果总数有8种;
(2)
解:游戏公平,
由表格知a+b为奇数的情况有4种,为奇数的情况也有4种,
概率相同,都是
,所以游戏公平.
21.(1)见解析;
(2)18.
【解析】
(1)根据平行四边形的性质及全等三角形的判定证得
≌
,即可得到AB=DF,从而证明四边形ABDF是平行四边形,再根据∠BDF=90°即可证明四边形ABDF是矩形;
(2)根据全等的性质、矩形性质及勾股定理得到AB=DF=3,AF=4,由平行四边形性质求得CF=6,最后利用梯形的面积公式计算即可.
(1)
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,即AB∥CF,
∴∠BAE=∠FDE,
∵E为线段AD的中点,
∴AE=DE,
又∵∠AEB=∠DEF,
∴
≌
(ASA),
∴AB=DF,
又∵AB∥DF,
∴四边形ABDF是平行四边形,
∵∠BDF=90°,
∴四边形ABDF是矩形;
(2)
解:由(1)知,四边形ABDF是矩形,
∴AB=DF=3,∠AFD=90°,
∴在
中,
,
∵四边形ABCD是平行四边形,
∴AB=CD=3,
∴CF=CD+DF=3+3=6,
∴
.
22.(1)每桶甲消毒液的价格是45元、每桶乙消毒液的价格是35元;
(2)当甲消毒液购买18桶,乙消毒液购买12桶时,所需资金总额最少,最少总金额是1230元.
【解析】
(1)设每桶甲消毒液的价格是a元、每桶乙消毒液的价格是b元,根据题意列二元一次方程组,解方程组即可求解;
(2)根据题意可得出关于a的一元一次不等式组
,解之即可得出a的取值范围,再根据所需资金总额=甲种消毒液的价格×购进数量+乙种消毒液的价格×购进数量,即可得出W关于a的函数关系式,再利用一次函数的性质即可解决最值问题.
(1)
解:设每桶甲消毒液的价格是a元、每桶乙消毒液的价格是b元,
依题意,得:
,
解得:
,
答:每桶甲消毒液的价格是45元、每桶乙消毒液的价格是35元;
(2)
解:购买甲消毒液a桶,则购买乙消毒液(30-a)桶,
依题意,得:(30-a)+5≤a≤2(30-a),
解得17.5≤a≤20,
而W=45a+35(30-a)=10a+1050,
∵10>0,
∴W随a的增大而增大,
∴当a=18时,W取得最小值,最小值为10×18+1050=1230,
此时30-18=12,
答:当甲消毒液购买18桶,乙消毒液购买12桶时,所需资金总额最少,最少总金额是1230元.
23.(1)DE是⊙O的切线,证明见解析;
(2)成立,证明见解析
【解析】
(1)证明△BDC∽△BED,推出∠BCD=∠BDE=90°,即可证明DE是⊙O的切线;
(2)延长PA至Q,使AQ=CP,则PA+PC=
PA+AQ=PQ,证明△QAD≌△PCD(SAS),再推出△PQD是等腰直角三角形,即可证明结论成立.
(1)
解:DE是⊙O的切线;理由如下:
∵BD²=BC⋅BE,
∴
,
∵∠CBD=∠DBE,
∴△BDC∽△BED,
∴∠BCD=∠BDE,
∵BD为⊙O的直径,
∴∠BCD=90°,
∴∠BDE=90°,
∴DE是⊙O的切线;
(2)
解:
成立,理由如下:
延长PA至Q,使AQ=CP,则PA+PC=
PA+AQ=PQ,
∵四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∵四边形APCD是圆内接四边形,
∴∠PAD+∠PCD=180°,
∵∠QAD+∠PAD=180°,
∴∠QAD=∠PCD,
∴△QAD≌△PCD(SAS),
∴∠QDA=∠PDC,QD=PD,
∴∠QDA+∠PDA
=∠PDC+∠PDA=90°,
∴△PQD是等腰直角三角形,
∴PQ=
PD,即PA+PC=
PD,
∴
成立.
24.(1)2
(2)
(3)
【解析】
(1)将点(0,2)带入直接求解;(2)找到三个点M的纵坐标之间的而关系,即可求解;(3)将函数转化为方程,即可表示出
,
,带入原式即可求解.
(1)
解:∵将点(0,2)带入
得:
.
(2)
由(1)可知,抛物线的解析式为
,
∵当S=m时恰好有三个点M满足,
∴必有一个M为抛物线的顶点,且M纵坐标互为相反数.
当
时,
.
即此时M(
,
),则另外两个点的纵坐标为
.
∴
.
(3)
由题可知,
,则
∴
则
.
- 1【328019】浙江省台州市2021年中考数学真题
- 2【328018】浙江省衢州市2022年中考数学真题
- 3【328017】浙江省丽水市2021年中考数学真题
- 4【328016】西藏2021年中考数学真题试卷
- 5【328015】四川省眉山市2021年中考数学真题
- 6【328014】四川省达州市2021年中考数学真题
- 7【328013】山东省烟台市2021年中考数学真题
- 8【328010】山东省东营市2021年中考数学真题
- 9【328011】山东省济宁市2021年中考数学真题
- 10【328012】山东省威海市2021年中考数学真题
- 11【328009】山东省德州市2021年中考数学试卷
- 12【328008】山东省滨州市2021年中考数学真题
- 13【328007】青海省西宁市城区2022年中考数学真题
- 14【328006】青海省西宁市城区2021年中考真题数学试卷
- 15【328005】内蒙古赤峰市2021年中考数学真题
- 16【328004】辽宁省锦州市2021年中考真题数学试卷
- 17【328003】辽宁省鞍山市2021年中考真题数学试卷
- 18【328002】江苏省镇江市2021年中考数学真题试卷
- 19【328001】江苏省常州市2021年数学中考真题
- 20【328000】湖南省株洲市2021年中考数学真题
- 【327999】湖南省湘潭市2021年中考数学真题
- 【327998】湖南省邵阳市2021年中考数学真题
- 【327997】湖南省怀化市2021年中考真题数学试卷
- 【327996】湖南省衡阳市2021年中考数学真题
- 【327995】湖北省随州市2021年中考数学真题
- 【327994】湖北省荆州市2021年中考数学真题
- 【327992】湖北省鄂州市2021年中考数学真题
- 【327993】湖北省荆门市2021年中考数学真题
- 【327991】黑龙江省龙东地区农垦 森工2021年中考数学真题
- 【327990】河北省2021年中考数学试卷
- 【327989】海南省2021年中考数学真题试卷
- 【327988】贵州省贵阳市2021年中考数学真题
- 【327987】贵州省安顺市2021年中考数学真题
- 【327985】广西来宾市2021年中考数学真题
- 【327986】广西玉林市2021年中考数学真题
- 【327984】广西贵港市2021年中考数学真题
- 【327983】广东省广州市2021年中考数学真题
- 【327982】甘肃省武威市定西市平凉市酒泉市庆阳市2021年中考数学试卷
- 【327981】福建省2021年中考数学试卷
- 【327980】北京市2021年中考数学真题试卷