当前位置:首页 > 中考 > 数学试卷

【327759】2022年山东省淄博市中考数学试卷

时间:2025-01-20 20:12:10 作者: 字数:24536字
简介:

2022年山东省淄博市中考数学试卷

一、选择题:本大题共12个小题,每小题5分,共60分。在每小题所给出的四个选项中,只有一项是符合题目要求的。

1.(5分)若实数a的相反数是﹣1,则a+1等于(  )

A2

B.﹣2

C0

D <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】A

【考点】实数的性质;相反数

【分析】根据相反数的定义求出a的值,代入代数式求值即可.

【解答】解:∵实数a的相反数是﹣1,∴a1,∴a+12.故选:A

【难度】1

2.(5分)下列图案中,既是轴对称图形又是中心对称图形的是(  )

A <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

B <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

C <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

D <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】D

【考点】中心对称图形;轴对称图形

【分析】根据中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.

【解答】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D

【难度】1

3.(5分)经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是(  )

A <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

B <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

C <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

D <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】C

【考点】专题:正方体相对两个面上的文字

【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,“Z字两端是对面,即可解答.

【解答】解:A、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;B、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故B不符合题意;C、因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一个四字成语金榜题名,故C符合题意;D、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意;故选:C

【难度】1

4.(5分)小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:

人数

3

4

8

5

课外书数量(本)

12

13

15

18

则阅读课外书数量的中位数和众数分别是(  )

A1315

B1415

C1318

D1515

【答案】D

【考点】众数;中位数

【分析】利用中位数,众数的定义即可解决问题.

【解答】解:中位数为第10个和第11个的平均数 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 15,众数为15.故选:D

【难度】1

5.(5分)某城市几条道路的位置关系如图所示,道路ABCD,道路ABAE的夹角∠BAE50°.城市规划部门想新修一条道路CE,要求CFEF,则∠E的度数为(  )

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

A23°

B25°

C27°

D30°

【答案】B

【考点】等腰三角形的性质;平行线的性质

【分析】先根据平行线的性质,由ABCD得到∠DFE=∠BAE50°,根据等腰三角形的性质得出∠C=∠E,再根据三角形外角性质计算∠E的度数.

【解答】解:∵ABCD,∴∠DFE=∠BAE50°,∵CFEF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> DFE <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 50°25°,故选:B

【难度】1

6.(5分)下列分数中,和π最接近的是(  )

A <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

B <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

C <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

D <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】A

【考点】有理数大小比较

【分析】把分数化小数,用分数的分子除以分母即得小数商;据此先分别把每个选项中的分数化成小数,进而比较得解.

【解答】解: <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 3.1416  <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 3.1408 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 3.14 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 3.1428,因为π≈3.1416,所以和π最接近的是 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> .故选:A

【难度】1

7.(5分)如图,在△ABC中,ABAC,∠A120°.分别以点AC为圆心,以大于 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ分别交BCAC于点D和点E.若CD3,则BD的长为(  )

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

A4

B5

C6

D7

【答案】C

【考点】作图—基本作图;线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形

【分析】连接AD,如图,先根据等腰三角形的性质和三角形内角和定理计算出∠B=∠C30°,再由作法得DE垂直平分AC,所以DADC3,所以∠DAC=∠C30°,从而得到∠BAD90°,然后根据含30度角的直角三角形三边的关系求BD的长.

【解答】解:连接AD,如图,∵ABAC,∠A120°,∴∠B=∠C30°,由作法得DE垂直平分AC,∴DADC3,∴∠DAC=∠C30°,∴∠BAD120°﹣30°90°,在Rt△ABD中,∵∠B30°,∴BD2AD6.故选:C <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【难度】3

8.(5分)计算(﹣2a3b2﹣3a6b2的结果是(  )

A.﹣7a6b2

B.﹣5a6b2

Ca6b2

D7a6b2

【答案】C

【考点】幂的乘方与积的乘方;合并同类项

【分析】先根据积的乘方法则计算,再合并同类项.

【解答】解:原式=4a6b2﹣3a6b2a6b2,故选:C

【难度】1

9.(5分)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x元,则下列方程中正确的是(  )

A <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

B <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

C <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

D <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】D

【考点】由实际问题抽象出分式方程

【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程.

【解答】解:由题意可得, <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,故选:D

【难度】3

10.(5分)如图,在边长为4的菱形ABCD中,EAD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为(  )

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

A16

B6 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

C12 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

D30

【答案】B

【考点】菱形的性质;全等三角形的判定与性质

【分析】连接ACBDO,如图,根据菱形的性质得到ADBCCBCDAD4ACBDBOODOCAO,再利用∠DEF=∠DFE得到DFDE2,证明∠BCF=∠BFC得到BFBC4,则BD6,所以OBOD3,接着利用勾股定理计算出OC,从而得到AC2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,然后根据菱形的面积公式计算它的面积.

【解答】解:连接ACBDO,如图,∵四边形ABCD为菱形,∴ADBCCBCDAD4ACBDBOODOCAO,∵EAD边的中点,∴DE2,∵∠DEF=∠DFE,∴DFDE2,∵DEBC,∴∠DEF=∠BCF,∵∠DFE=∠BFC,∴∠BCF=∠BFC,∴BFBC4,∴BDBF+DF4+26,∴OBOD3,在Rt△BOC中,OC <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴AC2OC2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴菱形ABCD的面积 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ACBD <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 66 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> .故选:B <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【难度】5

11.(5分)若二次函数yax2+2的图象经过P13),Qmn)两点,则代数式n2﹣4m2﹣4n+9的最小值为(  )

A1

B2

C3

D4

【答案】A

【考点】二次函数图象上点的坐标特征;因式分解﹣运用公式法

【分析】利用非负数的性质,利用配方法解决问题即可.

【解答】解:∵二次函数yax2+2的图象经过P13),∴3a+2,∴a1,∴yx2+2,∵Qmn)在yx2+2上,∴nm2+2,∴n2﹣4m2﹣4n+9=(m2+22﹣4m2﹣4m2+2+9m4﹣4m2+5=(m2﹣22+1,∵(m2﹣22≥0,∴n2﹣4m2﹣4n+9的最小值为1.故选:A

【难度】3

12.(5分)如图,在△ABC中,ABAC,点DAC边上,过△ABD的内心IIEBD于点E.若BD10CD4,则BE的长为(  )

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

A6

B7

C8

D9

【答案】B

【考点】全等三角形的判定与性质;角平分线的性质;等腰三角形的性质;三角形的内切圆与内心

【分析】如图,连接AIBICIDI,过点IITAC于点T.证明△IDT≌△IDEAAS),推出DEDTITIE,证明Rt△BEI≌Rt△CTIHL),推出BECT,设BECTx,根据DEDT,可得10﹣xx﹣4,求出x即可解决问题.

【解答】解:如图,连接AIBICIDI,过点IITAC于点T <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> I是△ABD的内心,∴∠BAI=∠CAI,∵ABACAIAI,∴△BAI≌△CAISAS),∴IBIC,∵∠ITD=∠IED90°,∠IDT=∠IDEDIDI,∴△IDT≌△IDEAAS),∴DEDTITIE,∵∠BEI=∠CTI90°,∴Rt△BEI≌Rt△CTIHL),∴BECT,设BECTx,∵DEDT,∴10﹣xx﹣4,∴x7,∴BE7.故选:B

【难度】5

二、填空题:本大题共5个小题,每小题4分,共20分。

13.(4分)要使根式 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 有意义,则a的取值范围是    

【答案】a≥5

【考点】二次根式有意义的条件

【分析】a﹣5≥0,即可求解.

【解答】解:∵a﹣5≥0,∴a≥5,故答案为:a≥5

【难度】1

14.(4分)分解因式:x3﹣9x   

【答案】xx+3)(x﹣3

【考点】提公因式法与公式法的综合运用

【分析】根据提取公因式、平方差公式,可分解因式.

【解答】解:原式=xx2﹣9)=xx+3)(x﹣3),故答案为:xx+3)(x﹣3).

【难度】1

15.(4分)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣34)的对应点是A125),则点B(﹣42)的对应点B1的坐标是    

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】13).

【考点】坐标与图形变化﹣平移

【分析】根据点A(﹣34)的对应点是A125),可得点A向右平移5个单位,向上平移1个单位至A1,进而可以解决问题.

【解答】解:∵点A(﹣34)的对应点是A125),∴点B(﹣42)的对应点B1的坐标是(13).故答案为:(13).

【难度】3

16.(4分)计算: <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>    

【答案】2

【考点】分式的加减法

【分析】先变形,再根据分式的加减法则求出即可.

【解答】解:原式 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>  <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> =﹣2,故答案为:﹣2

【难度】3

17.(4分)如图,正方形ABCD的中心与坐标原点O重合,将顶点D10)绕点A01)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……以此类推,则点D2022的坐标是    

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】D2022(﹣20232022).

【考点】规律型:点的坐标;坐标与图形变化﹣旋转

【分析】如图,过点D1D1Ey轴于E,过点D2D2Fx轴于F,过点D3D3Gy轴于G,过点D4D4Hx轴于H,过点D5KD5Ky轴于K,可得D112),D2(﹣32),D3(﹣3,﹣4),D45,﹣4),D556),D6(﹣76),……,观察发现:每四个点一个循环,D4n4n+1,﹣4n),D4n+14n+14n+2),D4n+2(﹣4n﹣34n+2),D4n+3(﹣4n﹣3,﹣4n﹣4),由2022505×4+2,推出D2022(﹣20232022).

【解答】解:如图,过点D1D1Ey轴于E,过点D2D2Fx轴于F,过点D3D3Gy轴于G,过点D4D4Hx轴于H,过点D5KD5Ky轴于K <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ∵正方形ABCD的中心与坐标原点O重合,D10),∴OAOBOCOD1ABBCCDAD <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∠BAO=∠CBO=∠DCO=∠ADO45°,∴A01),B(﹣10),C0,﹣1),∵将顶点D10)绕点A01)逆时针旋转90°得点D1,∴∠D1AE45°,∠AED190°AD1AD <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴AEAD1•cos∠D1AE <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> cos45°1D1EAD1•sin∠D1AE <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> sin45°1,∴OEOA+AE1+12BD1AB+BD1 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴D112),∵再将D1绕点B逆时针旋转90°得点D2,∴∠D2BF45°,∠D2FB90°BD2BD12 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴D2FBD2sin∠D2BF2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> sin45°2BFBD2cos∠D2BF2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> cos45°2,∴OFOB+BF1+23,∴D2(﹣32),再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……同理可得:D3(﹣3,﹣4),D45,﹣4),D556),D6(﹣76),……,观察发现:每四个点一个循环,D4n4n+1,﹣4n),D4n+14n+14n+2),D4n+2(﹣4n﹣34n+2),D4n+3(﹣4n﹣3,﹣4n﹣4),∵20224×505+2,∴D2022(﹣20232022);故答案为:(﹣20232022).

【难度】5

三、解答题:本大题共7个小题,共70分。解答要写出必要的文字说明、证明过程或演算步骤。

18.(8分)解方程组: <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【考点】解二元一次方程组

【分析】利用加减消元法或代入消元法解二元一次方程组即可.

【解答】解:整理方程组得 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ×2﹣得﹣7y=﹣7y1,把y1代入x﹣23,解得x5,∴方程组的解为 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【难度】1

19.(8分)如图,△ABC是等腰三角形,点DE分别在腰ACAB上,且BECD,连接BDCE.求证:BDCE

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】证明见解析.

【考点】全等三角形的判定与性质;等腰三角形的性质

【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.

【解答】证明:∵△ABC是等腰三角形,∴∠EBC=∠DCB,在△EBC与△DCB中, <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴△EBC≌△DCBSAS),∴BDCE

【难度】3

20.(10分)如图,直线ykx+b与双曲线y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 相交于A12),B两点,与x轴相交于点C40).

1)分别求直线AC和双曲线对应的函数表达式;

2)连接OAOB,求△AOB的面积;

3)直接写出当x0时,关于x的不等式kx+b <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 的解集.

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】1)直线AC的解析式为y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,双曲线的解析式为y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x0);(2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ;(31x3

【考点】反比例函数与一次函数的交点问题

【分析】1)将已知点坐标代入函数表达式,即可求解;

2)直线ACy <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 与双曲线:y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x0)相交于A12),B两点,联立方程组,求出点B的坐标为(3 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ),根据组合法(即基本图形面积的和差)即可以解决问题;

3)根据图象即可解决问题.

【解答】解:(1)将A12),C40)代入ykx+b,得 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,解得: <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴直线AC的解析式为y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,将A12)代入y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x0),得m2,∴双曲线的解析式为y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x0);(2)∵直线AC的解析式为y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> y轴交点D,∴点D的坐标为(0 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ),∵直线ACy <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 与双曲线:y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x0)相交于A12),B两点,∴ <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴ <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>  <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴点B的坐标为(3 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ),∴△AOB的面积 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 4 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 4 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 1 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ;(3)观察图象,∵A12),B3 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ),∴当x0时,关于x的不等式kx+b <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 的解集是1x3

【难度】3

21.(10分)某中学积极落实国家“双减”教育政策,决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展为优化师资配备,学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程(要求必须选修一门且只能选修一门)?”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:

请结合上述信息,解答下列问题:

1)共有    名学生参与了本次问卷调查;“陶艺”在扇形统计图中所对应的圆心角是    度;

2)补全调查结果条形统计图;

3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】112099;(2)图形见解析;(3 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【考点】列表法与树状图法;扇形统计图;条形统计图

【分析】1)由选修“礼仪”的学生人数除以所占百分比得出参与了本次问卷调查的学生人数,即可解决问题;

2)求出选修“厨艺”和“园艺”的学生人数,即可解决问题;

3)画树状图,共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有5种,再由概率公式求解即可.

【解答】解:(1)参与了本次问卷调查的学生人数为:30÷25%120(名),则“陶艺”在扇形统计图中所对应的圆心角为:360° <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 99°,故答案为:12099;(2)条形统计图中,选修“厨艺”的学生人数为:120 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 18(名),则选修“园艺”的学生人数为:120﹣30﹣33﹣18﹣1524(名),补全条形统计图如下: <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 3)把“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程分别记为ABCDE,画树状图如下: <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有5种,∴小刚和小强两人恰好选到同一门课程的概率为 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【难度】3

22.(10分)如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端BDF在同一直线上,BFFD40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为,点E的俯角为16°

问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.

解答过程中可直接选用表格中的数据哟!

科学计算器按键顺序

计算结果(已取近似值)


0.156


0.158


0.276


0.287

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】综合楼的高度约是37.00米.

【考点】解直角三角形的应用﹣仰角俯角问题

【分析】EGAB,垂足为G,作AHCD,垂足为H,由题意知,EGBF40米,EFBG12.88米,∠HAE16°=∠AEG16°,∠CAH,在Rt△AEG中,有0.287 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> AG≈11.48(米),即得HDAB24.36米,在Rt△ACH中,有0.158 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,得CH≈12.64(米),故CDCH+HD37.00(米).

【解答】解:小明能运用以上数据,得到综合楼的高度,理由如下:作EGAB,垂足为G,作AHCD,垂足为H,如图: <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 由题意知,EGBF40米,EFBG12.88米,∠HAE16°=∠AEG16°,∠CAH,在Rt△AEG中,tan∠AEG <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴tan16° <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,即0.287 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴AG40×0.28711.48(米),∴ABAG+BG11.48+12.8824.36(米),∴HDAB24.36米,在Rt△ACH中,AHBDBF+FD80米,tan∠CAH <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴tan9° <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,即0.158 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴CH80×0.15812.64(米),∴CDCH+HD12.64+24.3637.00(米),答:综合楼的高度约是37.00米.

【难度】5

23.(12分)已知△ABCO的内接三角形,∠BAC的平分线与O相交于点D,连接DB

1)如图,设∠ABC的平分线与AD相交于点I,求证:BDDI

2)如图,过点D作直线DEBC,求证:DEO的切线;

3)如图,设弦BDAC延长后交O外一点F,过FAD的平行线交BC的延长线于点G,过GO的切线GH(切点为H),求证:FGHG

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】1)证明见解答;(2)证明见解答;(3)证明见解答.

【考点】圆的综合题

【分析】1)根据角的和与外角的性质可得:∠BID=∠DBI,从而得结论;

2)根据垂径定理可得:ODBC,再由BCDE可得结论;

3)如图,连接BHCH,证明△HCG∽△BHG和△CGF∽△FGB,可得结论.

【解答】证明:(1)如图 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> AD平分∠BACBI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,∵∠CAD=∠CBD,∴∠CBD=∠BAD,∵∠BID=∠BAD+∠ABI,∠DBI=∠CBD+∠CBI,∴∠BID=∠DBI,∴BDDI;(2)如图,连接OD <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ∵∠CAD=∠BAD,∴ <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴ODBC,∵DEBC,∴ODDE,∴DEO的切线;(3)如图,作直径交OM,连接CMBHCH <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ∴∠MCH90°,∴∠M+∠CHM90°,∵∠B=∠M,∴∠B+∠CHM90°,∵GHO的切线,∴∠OHG=∠CHG+∠CHM90°,∴∠CHG=∠B,如图,连接BHCH <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> GHO的切线,∴∠CHG=∠HBG,∵∠CGH=∠BGH,∴△HCG∽△BHG,∴ <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴GH2BGCG,∵ADGF,∴∠AFG=∠CAD,∵∠CAD=∠FBG,∴∠FBG=∠AFG,∵∠CGF=∠BGF,∴△CGF∽△FGB,∴ <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴FG2BGCG,∴FGHG

【难度】5

24.(12分)如图,抛物线y=﹣x2+bx+cx轴相交于AB两点(点A在点B的左侧),顶点D14)在直线ly <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x+t上,动点Pmn)在x轴上方的抛物线上.

1)求这条抛物线对应的函数表达式;

2)过点PPMx轴于点MPNl于点N,当1m3时,求PM+PN的最大值;

3)设直线APBP与抛物线的对称轴分别相交于点EF,请探索以AFBGG是点E关于x轴的对称点)为顶点的四边形面积是否随着P点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.

 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【答案】1y=﹣x2+2x+3;(2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ;(3)四边形AFBG的面积 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> AB×FG <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 4×816

【考点】二次函数综合题

【分析】1)利用顶点式求解,可得结论;

2)如图,设直线lx轴于点T,连接PTBDBDPM于点J.设Pm,﹣m2+2m+3).四边形DTBP的面积=△PDT的面积+△PBT的面积 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> DT×PN <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> TB×PM <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> PM+PN),推出四边形DTBP的面积最大时,PM+PN的值最大,求出四边形DTBP的面积的最大值,可得结论;

3)四边形AFBG的面积不变.如图,设Pm,﹣m2+2m+3),求出直线APBP的解析式,可得点EF的坐标,求出FG的长,可得结论.

【解答】解:(1)∵抛物线的顶点D14),∴可以假设抛物线的解析式为y=﹣(x﹣12+4=﹣x2+2x+3;(2)如图,设直线lx轴于点T,连接PTBDBDPM于点J.设Pm,﹣m2+2m+3).点D14)在直线ly <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x+t上,∴4 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> t,∴t <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴直线DT的解析式为y <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,令y0,得到x=﹣2,∴T(﹣20),∴OT2,∵B30),∴OB3,∴BT5,∵DT <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 5,∴TDTB,∵PMBTPNDT,∴四边形DTBP的面积=△PDT的面积+△PBT的面积 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> DT×PN <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> TB×PM <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> PM+PN),∴四边形DTBP的面积最大时,PM+PN的值最大,∵D14),B30),∴直线BD的解析式为y=﹣2x+6,∴Jm,﹣2m+6),∴PJ=﹣m2+4m﹣3,∵四边形DTBP的面积=△DTB的面积+△BDP的面积 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 5×4 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> (﹣m2+4m﹣3×2=﹣m2+4m+7=﹣(m﹣22+11∵﹣10,∴m2时,四边形DTBP的面积最大,最大值为11,∴PM+PN的最大值 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 11 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ;解法二:延长MP交直线l与点H,易得直线ly <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> x <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴Hm <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> m <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ) 设直线lx轴于点C,交y轴于点L <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> C(﹣20),L0 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ),∴CL <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴sin∠CLO <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,由LOHM,∴∠NHM=∠CLO,∴sin∠NHM <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴PH <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> m <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> m2﹣2m﹣3m2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> m <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∴PN <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> PH,∴PM+PN=﹣m2+2m+3 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> m2 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> m <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>  <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> m﹣22 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ,∵ <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 0,∴m2时,PM+PN的值最大,最大值为 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> ;(3)四边形AFBG的面积不变.理由:如图,设Pm,﹣m2+2m+3),∵A(﹣10),B30),∴直线AP的解析式为y=﹣(m﹣3xm+3,∴E1,﹣2m+6),∵EG关于x轴对称,∴G12m﹣6),∴直线PB的解析式y=﹣(m+1x+3m+1),∴F12m+2),∴GF2m+2﹣2m﹣6)=8,∴四边形AFBG的面积 <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> AB×FG <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a> 4×816.∴四边形AFBG的面积是定值. <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>  <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/561/" title="山东" class="c1" target="_blank">山东</a> <a href="/tags/995/" title="山东省" class="c1" target="_blank">山东省</a> <a href="/tags/1070/" title="淄博" class="c1" target="_blank">淄博</a>

【难度】5