【321079】【课本】六年级(上)第07讲 不定方程
www.ishijuan.cn 爱试卷为中小学老师学生提供免费的试卷下载
第七讲 不定方程
不定方程,顾名思义就是“不确定”的方程,这里的不确定主要体现在方程的解上.之前我们学习的方程一般都有唯一解,比如方程
只有一个解
,方程组
只有一组解
.
什么样的方程,解不唯一呢?举个简单的例子,二元一次方程
的解就不唯一,因为每当y取定一个数值时,x就会有相应的取值和它对应,使方程成立,这样一来就会有无穷多组解.通常情况下,当未知数的个数大于方程个数时,这个方程(或方程组)就会有无穷多个解.
可是方程的解那么多,究竟哪个才是正确的呢?应该说,如果不加任何额外的限制条件,这无穷多个解都是正确的.但在实际情况中,我们通常会限定方程的解必须是自然数,这样一来,往往就只有少数几个解能符合要求,甚至在某些情况下所有的解都不对.
练一练
求下列方程的自然数解:
(1)
; (2)
;
(3)
;
(4)
.
本讲我们要学习的就是这样的一类方程(或方程组):它们所含未知数的个数往往大于方程的个数,而未知数本身又有一定的取值范围,这个范围通常都是自然数——这类方程就是“不定方程”.
形如
(a、b、c为正整数)的方程是二元一次不定方程的标准形式.解这样的方程,最基本的方法就是枚举.那怎样才能枚举出方程的全部自然数解呢?我们下面结合例题来进行讲解.
甲级铅笔7角一支,乙级铅笔3角一支,张明用5元钱买这两种铅笔,钱恰好花完.请问:张明共买了多少支铅笔?
「分析」设张明买了甲级铅笔支,乙级铅笔
支,可以列出不定方程:
,其中
和
都是自然数.怎么求解呢?
练习1、(1)求
的所有自然数解;(2)求
的所有自然数解.
一般地,如果
是
的一组解,那么
(当
时)也是
的一组解.这是因为
.另外,
(当
时)也是
的一组解,理由相同.
这条性质有什么用呢?我们以求
的自然数解为例,我们容易看出它有一组自然数解
.应用上面的规律,
每次增加3,
每次减少2(只要
还是自然数),所得结果仍然是
的一组解,所以
、
、
、
、
都是
的自然数解.另外
每次减少3(只要
还是自然数),
每次增加2,所得结果也是
的自然数解,所以
、
、
也都是
的自然数解.而且这样就已经求出了
的所有自然数解,它们是:
、
、
、
、
、
、
、
、
.
这就告诉我们,在求形如
(a、b、c为正整数)的不定方程的自然数解时,我们可以先找出一组解,之后其余的所有解都可由这一组解的
值每次变化
,
值每次变化
得到(注意变化的方向相反,一个增加,另一个就得减少,才能保证
的大小不变).
采购员去超市买鸡蛋.每个大盒里有23个鸡蛋,每个小盒里有16个鸡蛋.采购员要恰好买500个鸡蛋,他一共要买多少盒?
「分析」采购员要买多少个大盒,多少个小盒?大盒个数与小盒个数之间有什么联系?
练习2、点心店里卖大、小两种蛋糕.一个大蛋糕恰好够7个人吃,一个小蛋糕恰好够4个人吃,现在有100个人要吃蛋糕,应该准备大、小蛋糕各多少个才不浪费?如果每个大蛋糕10元,每个小蛋糕7元,那么至少要花多少钱?
前面的两道例题只要求方程的解是自然数即可,但有的问题除了要求“解必须是自然数”外,还会有一些其它的约束.下面我们就来看几道这样例题.
甲、乙两个小队去植树.甲小队有一人植树12棵,其余每人植树13棵;乙小队有一人植树8棵,其余每人植树10棵.已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?
「分析」不妨设甲小队有
人,乙小队有
人.由“两小队植树棵数相等”,你能列出一个关于
与
的不定方程吗?所列出来的不定方程又该如何求解?
练习3、天气炎热,高思学校购置了大、小空调若干.每台大空调每天耗电38度,每台小空调每天耗电13度.已知所有大空调日耗电量之和恰好比所有小空调日耗电量之和少1度.请问:单位里最少购进了多少台空调?
将一根长为380厘米的合金铝管截成若干根长为36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分最少是多少厘米?
「分析」不妨设已经截出了根长36厘米的管子和
根长24厘米的管子.合金铝管如果刚好能够被用完,方程应该怎么列?列出来的方程有自然数解吗?
练习4、酒店里有500升女儿红,李一白每次路过这里就打走35升,杜二甫每次路过这里就打走21升.那么若干天后,酒店剩余的女儿红最少是多少升?
二元一次不定方程只要找到一组自然数解,就能利用方程系数有规律地写出所有自然数解.而含有更多未知数的不定方程又当如何求解呢?
我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?这个问题是说:每只公鸡价值5文钱,每只母鸡价值3文钱,每3只小鸡价值1文钱.要想用100文钱恰好买100只鸡,公鸡、母鸡和小鸡应该分别买多少只?
「分析」题中有几个未知量?由这些未知量你能列出几个方程?
《张丘建算经》
张丘建,北魏清河(今山东邢台市清河县)人,中国古代数学家,著有《张丘建算经》.该书的体例为问答式,条理精密、文辞古雅,是中国古代数学史上少有的杰作.
《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决,某些不定方程问题的求解.百鸡问题就是其中一个著名的不定方程问题.
张丘建所处的年代是中国古代的南北朝时期.尽管当时的中国战火连年,朝代更迭频繁,且一直处于分裂状态,但数学发展的脚步依然没有停下.与《张丘建算经》同时代的算经还有《孙子算经》和《夏侯阳算经》,而与张丘建本人同时代的数学家还有大名鼎鼎的祖冲之.
卡莉娅到商店买糖,巧克力糖13元一包,奶糖17元一包,水果糖7.8元一包,酥糖10.4元一包,最后她共花了360元,且每种糖都买了.请问:卡莉娅买了多少包奶糖?
「分析」题目中出现了四种糖果,我们不妨设巧克力糖、奶糖、水果糖和酥糖分别有包、
包、
包和
包,再由已知的单价、总价可以列出方程
.这是一个四元一次方程,如果按通常的解法枚举出所有解,势必会有太多可能性需要讨论,过于繁琐.而且题目也没要我们求出所有解,只要我们求出奶糖的数量即可.那有没有办法不求其它糖果,只求奶糖的数量呢?
练习6、求
的所有自然数解.
作业
(1)求
的所有自然数解;(2)求
的所有自然数解.
在一次植树节的活动中,参加活动的男生每个人种11棵树,女生每个人种7棵树,最后所有人一共种了100棵树,那么参加活动的一共有多少人?
一张纸上写有25个1.21和25个1.3.现在要划去其中的一些数,使留下来的数的总和为20.08,那么应划去多少个1.3?
樱木同学特别喜欢吃包子,每天早上都到学一食堂买包子吃.
(1)第一天早上,樱木同学花了6元买了一些冬菜包和豆香包,两种包子他都买了.已知冬菜包每个7角,豆香包每个5角,那么樱木同学一共买了多少个包子?
(2)第二天早上,樱木同学去学一食堂的路上遇到了晴子.于是樱木邀请晴子一起去吃包子.到学一食堂后,两人除了吃冬菜包和豆香包以外还点了几串羊肉串.已知羊肉串每串1.2元,最后一共花了18元,所点包子与羊肉串数量总和是25.那么两人最多吃了多少串羊肉串?
甲、乙、丙三个班向希望工程捐赠图书.已知甲班有1人捐6册,有2人各捐7册,其余都各捐11册;乙班有1人捐6册,3人各捐8册,其余各捐10册;丙班有2人各捐4册,6人各捐7册,其余各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册,且每个班捐赠的册数都在400与600之间.各班各有多少人?
关注”试卷家“微信公众号免费下载试卷
- 1【334215】浙江省2024六年级数学下学期期中综合素质达标_新人教版
- 2【334214】浙江省2024六年级数学下学期期末综合素质达标_新人教版
- 3【334213】浙江省2024六年级数学下册_第6单元_整理和复习图形与几何_统计与概率综合素质达标_
- 4【334212】浙江省2024六年级数学下册_第6单元_整理和复习_1数与代数综合素质达标_新人教版
- 5【334211】浙江省2024六年级数学下册_第4-5单元综合素质达标_新人教版
- 6【334210】浙江省2024六年级数学下册_第3单元_圆柱与圆锥综合素质达标_新人教版
- 7【334209】浙江省2024六年级数学下册_第2单元_百分数_二_综合素质达标_新人教版
- 8【334208】浙江省2024六年级数学下册_第1单元_负数综合素质达标_新人教版
- 9【334207】福建省2024六年级数学下学期期中综合素质达标_新人教版
- 10【334206】福建省2024六年级数学下学期期末综合素质达标_新人教版
- 11【334205】福建省2024六年级数学下册_第6单元_整理和复习_图形与几何_统计与概率综合素质达标
- 12【334204】福建省2024六年级数学下册_第6单元_整理和复习_1数与代数综合素质达标_新人教版
- 13【334203】福建省2024六年级数学下册_第4-5单元综合素质达标_新人教版
- 14【334202】福建省2024六年级数学下册_第3单元_圆柱与圆锥综合素质达标_新人教版
- 15【334201】福建省2024六年级数学下册_第2单元_百分数_二_综合素质达标_新人教版
- 16【334200】福建省2024六年级数学下册_第1单元_负数综合素质达标_新人教版
- 17【334199】2025六年级数学下学期期中测试卷_一__苏教版
- 18【334198】2025六年级数学下学期期中测试卷_二__苏教版
- 19【334197】2025六年级数学下学期期末测试卷_一__苏教版
- 20【334196】2025六年级数学下学期期末测试卷_二__苏教版
- 【334195】2025六年级数学下册_一_扇形统计图同步练习题_苏教版
- 【334194】2025六年级数学下册_一_扇形统计图同步练习_苏教版
- 【334193】2025六年级数学下册_一_扇形统计图单元测试题_苏教版
- 【334192】2025六年级数学下册_一_扇形统计图单元测试_苏教版
- 【334190】2025六年级数学下册_一_欢乐农家游__百分数_二_测评试卷_青岛版六三制
- 【334191】2025六年级数学下册_一_欢乐农家游__百分数_二_练习题_青岛版六三制
- 【334189】2025六年级数学下册_一_百分数补充练习03_西师大版
- 【334188】2025六年级数学下册_一_百分数补充练习02_西师大版
- 【334187】2025六年级数学下册_一_百分数补充练习01_西师大版
- 【334186】2025六年级数学下册_五_总复习补充练习08_西师大版
- 【334185】2025六年级数学下册_五_总复习补充练习07_西师大版
- 【334184】2025六年级数学下册_五_总复习补充练习06_西师大版
- 【334183】2025六年级数学下册_五_总复习补充练习05_西师大版
- 【334182】2025六年级数学下册_五_总复习补充练习04_西师大版
- 【334181】2025六年级数学下册_五_总复习补充练习03_西师大版
- 【334180】2025六年级数学下册_五_总复习补充练习02_西师大版
- 【334178】2025六年级数学下册_五_确定位置练习题_苏教版
- 【334177】2025六年级数学下册_五_确定位置单元试卷_苏教版
- 【334179】2025六年级数学下册_五_总复习补充练习01_西师大版
- 【334176】2025六年级数学下册_五_确定位置单元测试题_苏教版